Our Ukrainian partner Materials Research Centre (MRC) offers manufacturing of Etching Reactor for MXene synthesis.

Our partners from MRC (Kiev, Ukraine) design and manufacture laboratory reactors for stable MXene synthesis with controlled synthesis parameters, that allows to obtain up to relatively big quantity of MXene per batch ( up to 20-100g)

Laboratory etching reactor for MXene synthesis, 2d carbides

MRC mission is technology development, design and manufacturing of specialized laboratory equipment for different research needs. Our staff includes engineers trained in design, manufacturing, as well as nanotechnology, chemistry, electrochemistry, and materials science. We can help you to develop solutions for your needs within a wide range of materials and equipment for their manufacturing.


While most nanomaterials are only available in “nano” quantities, research team of professor Yury Gogotsi  in Drexel Nanomaterials Institute, Drexel Universuty (USA)  can make in their lab as much as 100 grams of MXene at a time, using a reactor developed with the Materials Research Center in Ukraine.

The reactor with controlled feed rate and temperature allows rapid optimization of processing for your specific needs, and our engineering and sales team is always available to answer your questions.

Etching reactor with computer control system has the following advantages:

- automatically controlled cooling system for keeping stable temperature

- additional computer recording and displaying the temperature curves of the etching process

- computer control system for adjusting the rate of material feeding and mixing

- possibility to connect the supply of neutral gases through the process

- possibility to connect two monitors for operating and displaying of process parameters

- possibility to connect the control unit to laboratory/institutional computer network, monitor and operate the process parameters though intranet/internet remote computer access


Solution for MAX-phase for etching is poured into reactor and hermetically closed by a cover, which enables a controlled and safe removal of hydrogen.

MAX-phase feeding is done at a constant rate.  To prevent deposition of material, the solution is constantly mixed. Chemical reaction of MAX-phase etching is exothermic. A water-cooled shell and feeder for material supply are designed for the temperature control.

MAX-phase etching is done following, for example, the reaction:

Ti3AlC2 + 3HF + 2H2O = AlF3 + 5/2H2 + Ti3C2(ОН)2

Hydrogen that is formed during the etching process flows into the discharge system for further utilization or is discharged. After etching, the solution is discharged for product purification from reaction products and other impurities.

 MRC offers:

MXene technology development

Flexible engineering design

Customized manufacturing tailored to meet your needs

MRC encourage you to learn more about the exciting possibilities we can offer you, and we look forward to partnering with you to improve your material's synthesis and manufacturing.

Read more about the MXene synthesis technology in our publication:

C. E. Shuck, A. Sarycheva, M. Anayee, A. Levitt, Y. Zhu, S. Uzun, V. Balitskiy, V. Zahorodna, O. Gogotsi, and Y. Gogotsi, Scalable Synthesis of Ti3C2Tx MXene. Advanced Engineering Materials 22, 1901241(2020) https://doi.org/10.1002/adem.201901241

To buy high quality MXenes or MAX phases from reliable MXene supplier for research needs and for further information and detailes about ordering Etching Reactor for MXene synthesis please contact us at This email address is being protected from spambots. You need JavaScript enabled to view it.  or our partners at This email address is being protected from spambots. You need JavaScript enabled to view it.

To get a quota with price on MXene synthesis or price on MAX phase powders please contact us at This email address is being protected from spambots. You need JavaScript enabled to view it.