Carbon-Ukraine - Equipment Manufacturing

 

 
 
 
  • About Us

    activated carbon, nanoporous carbon, carbide-derived carbonCarbon-Ukraine ltd. serves diverse customers across a variety of industries including the filtration, energy, defense, pharmaceutical, and biomedical sectors. Our mission is the development, production and supply of MAX phases, two dimensional nanomaterials MXenes, porous and activated carbon materials, materials characterization, as well as design and manufacturing of equipment for MXene synthesis and nanostructured carbon production. Our consultative process leads to custom materials tailored to each customer's precise needs.

    Carbon Ukraine company is located in Kiev, Ukraine, and represented in the USA by MXene Nano Tech LLC and Nano Carbon Tech LLC in Poland. Our staff includes engineers trained in nanotechnology, organic and inorganic chemistry, electrochemistry, materials science and metallurgy. Carbon-Ukraine ltd. has gained wide recognition for its innovative processes and products.

    Whether you're creating new products or want to upgrade existing ones, we welcome your inquiries. Our controllable process allows us to rapidly optimize a material for your specific needs, and our engineering and sales team is always available to answer your questions. We encourage you to learn more about the exciting possibilities we offer you, and we look forward to partnering with you to improve your product's performance.

    Our Kiev area research and manufacturing center is fully capable of developing and producing porous carbon materials and MXenes tailored to meet your needs.

    Carbon-Ukraine also provides experimental synthesis of different materials for research needs, including MAX phases Ti3AlC2, Ti2AlC, Ti3AlCN, V2AlC, Nb2AlC and others, MXenes Ti2C, Ti3C2, V2C and others - multillayered, delaminated in aqueous or solvent media, different surface functionalisaztion can be developed on the order as well. For the best research results we recommend to use our materials, that have high quality and proven controlled stable properties that is the critical point in research.

    Due to many years of successful cooperation Carbon-Ukraine is official MXene licensed partner of Drexel University, USA, the initial inventor of these materials, allowing us manufacture MXenes and MXene products in different forms (for various applications) for research and educational purposes and supply them worldwide. 

     

    Dear researchers, 

    We are very glad to inform you that our laboratory in Kyiv is active and continues working on the synthesis of MAX phases and MXenes, now we synthesize the materials for all the orders and also have already some materials in stock. In spite on the hard situation in Ukraine we  have verified  logistics and now successfully deliver international orders worldwide. 

    We supply  Ti3AlC2, Ti2AlC, V2AlC, Nb2AlC MAX-phase materials and MXenes and also customized laboratory etching reactors fro  MXene synthesis and others related to MAX phase and MXene processing.  Please send all your enquiries and contact us for your orders by e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

     

    Thank you for support Ukraine and use high quality Ukrainian products!

     
     
     
  • Etching Reactor for MXene synthesis (acidic etching of MAX-phase powders), productivity up to 100 g per batch

    Our Ukrainian partner Materials Research Centre(MRC) offers manufacturing of Etching Reactor for MXene synthesis.

    Our partners from MRC (Kiev, Ukraine) design and manufacture laboratory reactors for stable MXene synthesis with controlled synthesis parameters, that allows to obtain up to relatively big quantity of MXene per batch ( up to 20-100g). Even relatively exotic MXenes can be manufactured in tens of grams per batch in laboratory environments, which is already a large amount for any nanomaterial. The ability to scale up MXene synthesis allows for rapid testing in a variety of fields, where large quantities are needed. Synthesis of even 50–100 g batches of MXene  provides the opportunity for commercial production of, for example, MXene inks for printing electronic devices and many others.

    Laboratory etching reactor for MXene synthesis, 2d carbides

    MRC mission is technology development, design and manufacturing of specialized laboratory equipment for different research needs. Our staff includes engineers trained in design, manufacturing, as well as nanotechnology, chemistry, electrochemistry, and materials science. We can help you to develop solutions for your needs within a wide range of materials and equipment for their manufacturing.

    ETCHING REACTOR FOR ACID ETCHING OF MAX-PHASE POWDERS, PRODUCTIVITY  UP to 100 g / DAY

    While most nanomaterials are only available in “nano” quantities, research team of professor Yury Gogotsi  in Drexel Nanomaterials Institute, Drexel Universuty (USA)  can make in their lab as much as 100 grams of MXene at a time, using a reactor developed with the Materials Research Center in Ukraine.

    The reactor with controlled feed rate and temperature allows rapid optimization of processing for your specific needs, and our engineering and sales team is always available to answer your questions. 

    Etching reactor with computer control system has the following advantages:

    - automatically controlled cooling system for keeping stable temperature

    - additional computer recording and displaying the temperature curves of the etching process

    - computer control system for adjusting the rate of material feeding and mixing

    - possibility to connect the supply of neutral gases through the process

    - possibility to connect two monitors for operating and displaying of process parameters

    - possibility to connect the control unit to laboratory/institutional computer network, monitor and operate the process parameters though intranet/internet remote computer access

     Operation

    Solution for MAX-phase for etching is poured into reactor and hermetically closed by a cover, which enables a controlled and safe removal of hydrogen.

    MAX-phase feeding is done at a constant rate.  To prevent deposition of material, the solution is constantly mixed. Chemical reaction of MAX-phase etching is exothermic. A water-cooled shell and feeder for material supply are designed for the temperature control.

    MAX-phase etching is done following, for example, the reaction:

    Ti3AlC2 + 3HF + 2H2O = AlF3 + 5/2H2 + Ti3C2(ОН)2

    Hydrogen that is formed during the etching process flows into the discharge system for further utilization or is discharged. After etching, the solution is discharged for product purification from reaction products and other impurities.

     Read more about the MXene synthesis technology in our publication:

    C. E. Shuck, A. Sarycheva, M. Anayee, A. Levitt, Y. Zhu, S. Uzun, V. Balitskiy, V. Zahorodna, O. Gogotsi, and Y. Gogotsi, Scalable Synthesis of Ti3C2Tx MXene. Advanced Engineering Materials 22, 1901241(2020) https://doi.org/10.1002/adem.201901241

    Publications about scaling up of MXene synthesis and Etching reactors:

    Michel W. Barsoum, Yury Gogotsi, Removing roadblocks and opening new opportunities for MXenes, Ceramics International,Volume 49, Issue 14, Part B, 2023, Pages 24112-24122. DOI: 10.1016/j.ceramint.2022.10.051.

    C. E. Shuck, A. Sarycheva, M. Anayee, A. Levitt, Y. Zhu, S. Uzun, V. Balitskiy, V. Zahorodna, O. Gogotsi, and Y. Gogotsi, Scalable Synthesis of Ti3C2Tx MXene. Advanced Engineering Materials 22, 1901241(2020) doi: 10.1002/adem.201901241

    M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Guidelines for Synthesis and Processing of 2D Titanium Carbide (Ti3C2Tx MXene), Chemistry of Materials, 2017, 29 (18) 7633-76445.

     

    Hossein Riazi, Srinivasa Kartik Nemani, Michael C. Grady, Babak Anasori, Masoud Soroush, Ti3C2 MXene–polymer nanocomposites and their applications, J. Mater. Chem. A, 2021,9, 8051-8098. doi: 10.1039/D0TA08023C

     

    C. E. Shuck and Y. Gogotsi, “Taking MXenes from the Lab to Commercial Products” Chemical Engineering Journal, vol. 401, pp. 125786, 2020

     

    Pritishma LakheSafety in Process Scale-up of MXene and Graphite Oxide Production, PhD Thesis, Texas A&M University, 2020

     

    Fundamental Aspects and Perspectives of MXenes, Editors: Mohammad Khalid, Andrews Nirmala Grace, Arunachalam Arulraj, Arshid Numan. Series Engineering Materials, Springer International Publishing, 2022

     

    Chao Peng, Tao Zhou, Ping Wei, et al. Photocatalysis over MXene-based hybrids: Synthesis, surface chemistry, and interfacial charge kinetics. APL Mater. 9, 070703 (2021); doi: 10.1063/5.0055711

     

    MRC and Carbon-Ukraine offer MXene technology development, Flexible engineering design, Customized manufacturing tailored to meet your needs

    MRC encourage you to learn more about the exciting possibilities we can offer you, and we look forward to partnering with you to improve your material's synthesis and manufacturing.

    To buy high quality MXenes or MAX phases from reliable MXene supplier for research needs and for further information and detailes about ordering Etching Reactor for MXene synthesis please contact us at This email address is being protected from spambots. You need JavaScript enabled to view it.  or our partners at This email address is being protected from spambots. You need JavaScript enabled to view it.

     

    To get a quota with price on MXene synthesis or price on MAX phase powders please contact us at This email address is being protected from spambots. You need JavaScript enabled to view it.

     

     

  • MAX-phases and MXene synthesis for research purposes

    Dear researchers, 

    We are very glad to inform you that our laboratory in Kyiv is active and continues working on the synthesis of MAX phases and MXenes, now we synthesize the materials for all the orders and also have already some materials in stock. In spite on the hard situation in Ukraine we have verified  logistics and now successfully deliver international orders worldwide. 

    We supply  Ti3AlC2, Ti2AlC, V2AlC, Nb2AlC MAX-phase materials and MXenes and also customized laboratory etching reactors fro  MXene synthesis and others related to MAX phase and MXene processing.  Please send all your enquiries and contact us for your orders by e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

     

    Due to many years of successful cooperation Carbon-Ukraine is the official MXene licensed partner of Drexel University, USA, the initial inventor of these materials, allowing us manufacture MXenes and MXene products in different forms (for various applications) for research and educational purposes and supply them worldwide. 

    Carbon-Ukraine provides synthesis of MXenes V2C, Ti2C and Ti3C2 (delaminated, multilayered), MXenes in aqueous media and different solvents, specific surface functionalisation and customizable flake size.

    MAX phases Ti3AlC2, Ti2AlC, V2AlC, Nb2AlC, Mo3AlC2,  others are also possible on specific customized orders.

    Carbon-Ukraine is engaged in experimental synthesis and customized manufacturing of  various materials for scientific research needs. We synthesized MAX-phase and MXene materials for more than 300 universities, research laboratories and  companies from different countries within joint R&D projects and customized orders. 

    Also we are open for cooperarion with academy and industrial partners, and will be glad to take part in international research and development projects.We have many successfully completed Horizon 2020 European projects, US DoE projects and are open for all r&d collaborations.

     

    MAX-Phases

    Our MAX-phase materials have specific composition intended for obtaining MXene. Available particle size:  ≤ 200, ≤100, ≤ 40 microns or bulk material. MAX-phases solid samples or targets are also available. 

    MXenes 

    MXene materials can be produced and supplied in the following forms:

    • MXene paste (V2C ,Ti3Caqueous solutions or in organic solvents), delaminated, multilayered
    • Powder with a particle size distribution range from hundreds of nm up to tens of µm
    • Thin film deposited on a substrate
    • Freestanding film (3-100 microns)
    • Colloidal solution of delaminated single-layer MXene sheets 
    • Freestanding cold-pressed discs

    MXene Carbon-Ukraine

    Our Ukrainian partner Materials Resaerch Centre (MRC) offers manufacturing of Etching Reactor for MXene synthesis.

    To get a quota with a price on MXene or MAX phase synthesis please contact us at This email address is being protected from spambots. You need JavaScript enabled to view it.

     

    Read more about the upscaled MXene synthesis technology in our recent collaborative article with Nanomaterials Group from Drexel University:

    C. E. Shuck, A. Sarycheva, M. Anayee, A. Levitt, Y. Zhu, S. Uzun, V. Balitskiy, V. Zahorodna, O. Gogotsi, and Y. Gogotsi, Scalable Synthesis of Ti3C2Tx MXene. Advanced Engineering Materials 22, 1901241(2020) https://doi.org/10.1002/adem.201901241

     Carbon-Ukraine supplied high quality materials that were used for research described in the following research papers, patents and books of our customers: 

    Eom, W., Shin, H., Ambade, R.B. et al. Large-scale wet-spinning of highly electroconductive MXene fibersNat Commun 11, 2825 (2020). DOI: 10.1038/s41467-020-16671-1

    Gao, X., Du, X., Mathis, T.S. et al. Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storageNat Commun 11, 6160 (2020). DOI: 10.1038/s41467-020-19992-3

    A. Sarycheva, A. Polemi, Y. Liu, K. Dandekar, B. Anasori, Y. Gogotsi, 2D titanium carbide (MXene) for wireless communicationScience Advances, vol. 4, no. 9, 2018. DOI: 10.1126/sciadv.aau0920

    Jeffrey D. Cain, Amin Azizi, Kathleen Maleski, Babak Anasori, Emily C. Glazer, Paul Y. Kim, Yury Gogotsi, Brett A. Helms, Thomas P. Russell, and Alex Zettl, Sculpting Liquids with Two-Dimensional Materials: The Assembly of Ti3C2Tx MXene Sheets at Liquid–Liquid Interfaces, ACS Nano 2019 13 (11), 12385-12392. DOI: 10.1021/acsnano.9b05088

    Read more MXene research publications where our materials were used...

     

  • Research publications based on MXene materials and equipment manufactured and supplied by Carbon-Ukraine

     

    Carbon-Ukraine manufactures and supplies high quality materials and unique laboratory equipment of customized design that is used for research described in many research papers, patents and books of our customers. Following are some of the publications: 

    PUBLICATIONS ON MAX-PHASES AND MXENE 

    Roslyk I, Baginskiy I, Zahorodna V, Gogotsi O, Ippolito S, Gogotsi Y. Porous Ti3AlC2 MAX phase enables efficient synthesis of Ti3C2Tx MXene. Int J Appl Ceram Technol. 2024; 1–8. https://doi.org/10.1111/ijac.14671

    Dahnan Spurling, Helge Krüger, Niklas Kohlmann, Florian Rasch, Matthias P. Kremer, Lorenz Kienle, Rainer Adelung, Valeria Nicolosi, Fabian Schütt, 3D networked MXene thin films for high performance supercapacitorsEnergy Storage Materials, Volume 65, 2024, 103148, ISSN 2405-8297, https://doi.org/10.1016/j.ensm.2023.103148.

    L. Bi, W. Perry, R. J. Wang, R. Lord, T. Hryhorchuk, A. Inman, O. Gogotsi, V. Balitskiy, V. Zahorodna, I. Baginskiy, S. Vorotilo, Y. Gogotsi, MXene Functionalized Kevlar Yarn via Automated, Continuous Dip Coating. Adv. Funct. Mater. 2023, 2312434. https://doi.org/10.1002/adfm.202312434

    Diedkova, K., Husak, Y., Simka, W. et al.Novel electrically conductive electrospun PCL-MXene scaffolds for cardiac tissue regeneration. Graphene and 2D Mater (2023).https://doi.org/10.1007/s41127-023-00071-5

    Hwang, H., Yang, S., Yuk, S. et al. Ti3C2Tx MXene as a growth template for amorphous RuOx in carbon nanofiber-based flexible electrodes for enhanced pseudocapacitive energy storage. NPG Asia Mater 15, 29 (2023). https://doi.org/10.1038/s41427-023-00476-x

    Gang San Lee, Yeo Hoon Yoon, Aamir Iqbal, Jisung Kwon, Taeyeong Yun, Suchithra Padmajan Sasikala, Tufail Hassan, Jin Goo Kim, Jun Tae Kim, Chan Woo Lee, Myung-Ki Kim, Chong Min Koo and Sang Ouk Kim. Maximized internal scattering in heterostack Ti3C2Tx MXene/graphene oxide film for effective electromagnetic interference shielding2D Mater., 10 (3), 2023, 10 035022. DOI: 10.1088/2053-1583/acd32a

    K. Diedkova, A.Pogrebnjak, S. Kyrylenko, K. Smyrnova, V. Buranich, P. Horodek, P. Zukowski, T. Koltunowicz, P. Galaszkiewicz, K.Makashina, V. Bondariev, M. Sahul, M. Čaplovičová, Ye. Husak, W. Simka, V. Korniienko, A. Stolarczyk, A. Blacha-Grzechnik, V. Balitskyi, V. Zahorodna, I. Baginskiy, U. Riekstina, O. Gogotsi, Y. Gogotsi, and M. Pogorielov, Polycaprolactone–MXene Nanofibrous Scaffolds for Tissue Engineering. ACS Applied Materials & Interfaces 2023 15 (11), 14033-14047. DOI: 10.1021/acsami.2c22780

    Stepan Vorotilo, Christopher E. Shuck, Mark Anayee et al. Affordable Combustion Synthesis of V2AlC Precursor for V2CTx MXene, 24 May 2023, DOI: 10.21203/rs.3.rs-2968558/v1

    S Adomavičiūtė-Grabusovė, Ramanavicius, S.; Popov, A.; Sablinskas, V.; Gogotsi, O.; Ramanavicius, A. Selective Enhancement of SERS Spectral Bands of Salicylic Acid Adsorbate on 2D Ti3C2Tx-Based MXene Film. Chemosensors 2021, 9, 223. DOI: 10.3390/chemosensors9080223

    Gao, X., Du, X., Mathis, T.S. et al. Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storageNature Commun 11, 6160 (2020). DOI: 10.1038/s41467-020-19992-3

    Khaled AlHassoon, Meikang Han, Yaaqoub Malallah, Vaibhavi Ananthakrishnan, Roman Rakhmanov, William Reil, Yury Gogotsi, Afshin S. Daryoush; Conductivity extraction of thin Ti3C2Tx MXene films over 1–10 GHz using capacitively coupled test-fixture. Appl. Phys. Lett. 4 May 2020; 116 (18): 184101. https://doi.org/10.1063/5.0002514

    Gang San Lee, Taeyeong Yun, Hyerim Kim, In Ho Kim, Jungwoo Choi, Sun Hwa Lee, Ho Jin Lee, Ho Seong Hwang, Jin Goo Kim, Dae-won Kim, Hyuck Mo Lee, Chong Min Koo, and Sang Ouk Kim. Mussel Inspired Highly Aligned Ti3C2Tx MXene Film with Synergistic Enhancement of Mechanical Strength and Ambient Stability. ACS Nano, 2020, 14 (9), 11722-11732. DOI: 10.1021/acsnano.0c04411

    Gun-Hee Lee, Gang San Lee, Junyoung Byun, Jun Chang Yang, Chorom Jang, Seongrak Kim, Hyeonji Kim, Jin-Kwan Park, Ho Jin Lee, Jong-Gwan Yook, Sang Ouk Kim, and Steve Park. Deep-Learning-Based Deconvolution of Mechanical Stimuli with Ti3C2Tx MXene Electromagnetic Shield Architecture via Dual-Mode Wireless Signal Variation Mechanism. ACS Nano, 2020, 14 (9), 11962-11972. DOI: 10.1021/acsnano.0c05105

    Yun, T., Kim, H., Iqbal, A., Cho, Y. S., Lee, G. S., Kim, M.-K., Kim, S. J., Kim, D., Gogotsi, Y., Kim, S. O., Koo, C. M.,Electromagnetic Shielding of Monolayer MXene Assemblies. Adv. Mater. 2020, 32, 1906769. DOI: 10.1002/adma.201906769

    Eom, W., Shin, H., Ambade, R.B. et al. Large-scale wet-spinning of highly electroconductive MXene fibersNature Commun 11, 2825 (2020). DOI: 10.1038/s41467-020-16671-1

    A. Sarycheva, A. Polemi, Y. Liu, K. Dandekar, B. Anasori, Y. Gogotsi, 2D titanium carbide (MXene) for wireless communicationScience Advances, vol. 4, no. 9, 2018. DOI: 10.1126/sciadv.aau0920

    Thorsten Schultz, Nathan C. Frey, Kanit Hantanasirisakul, Soohyung Park, Steven J. May, Vivek B. Shenoy, Yury Gogotsi, and Norbert Koch, Surface Termination Dependent Work Function and Electronic Properties of Ti3C2Tx MXene. Chemistry of Materials 2019 31 (17), 6590-6597. DOI: 10.1021/acs.chemmater.9b00414

    Netanel Shpigel, Arup Chakraborty, Fyodor Malchik, Gil Bergman, Amey Nimkar, Bar Gavriel, Meital Turgeman, Chulgi Nathan Hong, Maria R. Lukatskaya, Mikhael D. Levi, Yury Gogotsi, Dan T. Major, and Doron Aurbach. Can Anions Be Inserted into MXene? Journal of the American Chemical Society 2021 143 (32), 12552-12559. DOI: 10.1021/jacs.1c03840

    Ho Jin Lee, Jun Chang Yang, Jungwoo Choi, Jingyu Kim, Gang San Lee, Suchithra Padmajan Sasikala, Gun-Hee Lee, Sang-Hee Ko Park, Hyuck Mo Lee, Joo Yong Sim, Steve Park, and Sang Ouk Kim. Hetero-Dimensional 2D Ti3C2Tx MXene and 1D Graphene Nanoribbon Hybrids for Machine Learning-Assisted Pressure Sensors. ACS Nano 2021 15 (6), 10347-10356

    Taeyeong Yun, Gang San Lee, Jungwoo Choi, Hyerim Kim, Geon Gug Yang, Ho Jin Lee, Jin Goo Kim, Hyuck Mo Lee, Chong Min Koo, Joonwon Lim, and Sang Ouk Kim. Multidimensional Ti3C2Tx MXene Architectures via Interfacial Electrochemical Self-Assembly. ACS Nano 2021 15 (6), 10058-10066. DOI: 10.1021/acsnano.1c01727

    Jeffrey D. Cain, Amin Azizi, Kathleen Maleski, Babak Anasori, Emily C. Glazer, Paul Y. Kim, Yury Gogotsi, Brett A. Helms, Thomas P. Russell, and Alex Zettl, Sculpting Liquids with Two-Dimensional Materials: The Assembly of Ti3C2Tx MXene Sheets at Liquid–Liquid Interfaces, ACS Nano 2019 13 (11), 12385-12392. DOI: 10.1021/acsnano.9b05088

    Shahzad, Faisal & Iqbal, Aamir & Zaidi, Shabi & Hwang, Suk-Won & Koo, Chong Min. (2019). Nafion-stabilized two-dimensional transition metal carbide (MXene) as a high-performance electrochemical sensor for neurotransmitter. Journal of Industrial and Engineering Chemistry. 79. doi: 10.1016/j.jiec.2019.03.061.

    Jiushang Zheng, Bin Wang, Ailing Ding, Bo Weng, Jiucun Chen, Synthesis of MXene/DNA/Pd/Pt nanocomposite for sensitive detection of dopamine, Journal of Electroanalytical Chemistry, Volume 816, 2018, Pages 189-194, ISSN 1572-6657, doi: 10.1016/j.jelechem.2018.03.056.

    Ji Liu, Lorcan Mckeon, James Garcia, Sergio Pinilla, Sebastian Barwich, Matthias Möbius, Plamen Stamenov, Jonathan N. Coleman, and Valeria Nicolosi, Additive Manufacturing of Ti3 C2-MXene-Functionalized Conductive Polymer Hydrogels for Electromagnetic Interference Shielding. Adv. Mater., doi: 10.1002/adma.202106253

    Ke Li, Xuehang Wang, Xiaofeng Wang, Meiying Liang, Valeria Nicolosi, Yuxi Xu, Yury Gogotsi, All-pseudocapacitive asymmetric MXene-carbon-conducting polymer supercapacitors, Nano Energy, Volume 75, 2020, 104971, ISSN 2211-2855, doi: 10.1016/j.nanoen.2020.104971

    Pogorielov M, Smyrnova K, Kyrylenko S, Gogotsi O, Zahorodna V, Pogrebnjak A. MXenes-A New Class of Two-Dimensional Materials: Structure, Properties and Potential Applications. Nanomaterials (Basel). 2021 Dec 16;11(12):3412. doi: 10.3390/nano11123412

    Zhang, Jizhen, Seyedin, Shayan, Gu, Zhoujie, Yang, Wenrong, Wang, Xungai and Razal, Joselito M. 2017, MXene: a potential candidate for yarn supercapacitors, Nanoscale, doi: 10.1039/C7NR06619H

    Sergiy Kyrylenko, Oleksiy Gogotsi, Ivan Baginskiy, Vitalii Balitskyi, Veronika Zahorodna, Yevheniia Husak, Ilya Yanko, Mykolay Pernakov, Anton Roshchupkin, Mykola Lyndin, Bernhard B. Singer, Volodymyr Buranych, Alexander Pogrebnjak, Oksana Sulaieva, Oleksandr Solodovnyk, Yury Gogotsi, and Maksym Pogorielov, MXene-Assisted Ablation of Cells with a Pulsed Near-Infrared Laser, ACS Appl. Mater. Interfaces 2022, 14, 25, 28683–28696. Doi: 10.1021/acsami.2c08678

    Riazi Hossein,  Anayee Mark, Hantanasirisakul Kanit, Anasori Babak, Gogotsi Yury, Soroush Masoud. (2020). Surface Modification of a MXene by an Aminosilane Coupling Agent. Advanced Materials Interfaces. 7. doi: 10.1002/admi.201902008.

    Chueh-Han Wang, Narendra Kurra, Mohamed Alhabeb, Jeng-Kuei Chang, Husam N. Alshareef, and Yury Gogotsi, Titanium Carbide (MXene) as a Current Collector for Lithium-Ion Batteries, ACS Omega 2018 3 (10), 12489-12494. DOI: 10.1021/acsomega.8b02032

    El-Demellawi, Jehad K.; Lopatin, Sergei; Yin, Jun; Mohammed, Omar F.; Alshareef, Husam N. (2018): Tunable Multipolar Surface Plasmons in 2D Ti3C2Tx MXene Flakes. ACS Publications. Journal contribution.  doi:10.1021/acsnano.8b04029.s001

    Zhang, Jizhen & Kong, Na & Hegh, Dylan & Usman, Ken & Guan, Guangwu & Qin, Si & Jurewicz, Izabela & Yang, Wenrong & Razal, Joselito. (2020). Freezing Titanium Carbide (MXenes) Aqueous Dispersions for Ultra-long-term Storage. ACS Applied Materials & Interfaces. 12. 34032–34040. DOI: 10.1021/acsami.0c06728.

    A. S. Levitt, M. Alhabeb, C. B. Hatter, A. Sarycheva, G. Dion, and Y. Gogotsi, Electrospun MXene/carbon nanofibers as supercapacitor electrodes, Journal of Materials Chemistry A, vol. 7, no. 1, 2019, pp. 269.  doi:10.1039/C8TA09810G

    Jizhen Zhang, Simge Uzun, Shayan Seyedin, Peter A. Lynch, Bilen Akuzum, Zhiyu Wang, Si Qin, Mohamed Alhabeb, Christopher E. Shuck, Weiwei Lei, E. Caglan Kumbur, Wenrong Yang, Xungai Wang, Genevieve Dion, Joselito M. Razal, and Yury Gogotsi, Additive-Free MXene Liquid Crystals and Fibers. ACS Central Science 2020 6 (2), 254-265. DOI: 10.1021/acscentsci.9b01217

    Jeffrey D. Cain, Amin Azizi, Kathleen Maleski, Babak Anasori, Emily C. Glazer, Paul Y. Kim, Yury Gogotsi, Brett A. Helms, Thomas P. Russell, and Alex Zettl, Sculpting Liquids with Two-Dimensional Materials: The Assembly of Ti3C2Tx MXene Sheets at Liquid–Liquid Interfaces, ACS Nano 2019 13 (11), 12385-12392. DOI: 10.1021/acsnano.9b05088

    M. Anayee, N. Kurra, M. Alhabeb, M. Seredych, M. N. Hedhili, A. Emwas, H. N. Alshareef, B. Anasori, and Y. Gogotsi, "Role of acid mixtures etching on the surface chemistry and sodium ion storage in Ti3C2Tx MXene", Chemical Communications, vol. 56, no. 45, 2020, pp. 6090. doi: 10.1039/D0CC01042A

    Kołtunowicz TN, Gałaszkiewicz P, Kierczyński K, Rogalski P, Okal P, Pogrebnjak AD, Buranich V, Pogorielov M, Diedkova K, Zahorodna V, Balitskyi V, Serhiienko V, Baginskyi I, Gogotsi O. Investigation of AC Electrical Properties of MXene-PCL Nanocomposites for Application in Small and Medium Power Generation. Energies. 2021; 14(21):7123. doi: 10.3390/en14217123

     Eunji Choi, Juyun Lee, Yong-Jae Kim, Hyerim Kim, Minsu Kim, Junpyo Hong, Yun Chan Kang, Chong Min Koo, Dae Woo Kim, Seon Joon Kim, Enhanced stability of Ti3C2Tx MXene enabled by continuous ZIF-8 coating, Carbon, Volume 191, 2022, Pages 593-599, ISSN 0008-6223. doi 10.1016/j.carbon.2022.02.036

    Quain, Evan & Mathis, Tyler & Kurra, Narendra & Maleski, Kathleen & Van Aken, Katherine & Alhabeb, Mohamed & Alshareef, Husam & Gogotsi, Yury, Direct Writing of Additive-Free MXene-in-Water Ink for Electronics and Energy Storage.Advanced Materials Technologies. 4. 1800256 (2018). DOI:10.1002/admt.201800256

    Mohamed Alhabeb, Kathleen Maleski, Babak Anasori, Pavel Lelyukh, Leah Clark, Saleesha Sin, and Yury Gogotsi, Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). Chemistry of Materials 2017 29 (18), 7633-7644. DOI: 10.1021/acs.chemmater.7b02847

    Kumar S, Lei Y, Alshareef NH, Quevedo-Lopez MA, Salama KN (2018) Biofunctionalized Two-Dimensional Ti3C2 MXenes for Ultrasensitive Detection of Cancer Biomarker. Biosensors and Bioelectronics. Available: doi: 10.1016/ j.bios.2018.08.076.

    S. Buczek, M. Barsoum, S. Uzun, N. Kurra, R. Andris, E. Pomerantseva, K. A. Mahmoud, and Y. Gogotsi, Rational Design of Titanium Carbide MXene Electrode Architectures for Hybrid Capacitive Deionization, ENERGY & ENVIRONMENTAL MATERIALS, 2020. First published: 21 July 2020 doi: 10.1002/eem2.12110

    Shurbaji S., Manaph N.P.A., Ltaief S.M., Al-Shammari A.R., Elzatahry A., Yalcin H.C. Characterization of MXene as a Cancer Photothermal Agent Under Physiological Conditions. Front. Nanosci. 2021;3:689718. doi: 10.3389/fnano.2021.689718

    Abdulaziz S.R. Bati, Albertus A. Sutanto, Mengmeng Hao, Munkhbayar Batmunkh, Yusuke Yamauchi, Lianzhou Wang, Yun Wang, Mohammad Khaja Nazeeruddin, Joseph G. Shapter, Cesium-doped Ti3C2Tx MXene for efficient and thermally stable perovskite solar cells, Cell Reports Physical Science, Volume 2, Issue 10, 2021, 100598, ISSN 2666-3864,  doi:10.1016/j.xcrp.2021.100598.

    Kumar S, Park HM, Nguyen H, et al.High Stability of Ti3C2Tx MXene in PDLC-Based Energy Efficient Smart-Windows. Research Square; 2022. DOI: 10.21203/rs.3.rs-1659484/v1.

    Li, L., Liu, W., Jiang, K. et al. In-Situ Annealed Ti3C2Tx MXene Based All-Solid-State Flexible Zn-Ion Hybrid Micro Supercapacitor Array with Enhanced Stability. Nano-Micro Lett. 13, 100 (2021).  doi:10.1007/s40820-021-00634-2

    PATENT WO2020086548A1, Yury Gogotsi, Pol Salles Perramon, David Pinto, Kanit  Hantansirisakul, Kathleen Maleski, Electrochromic devices using transparent MXenes  

    Thorsten Schultz, Nathan C. Frey, Kanit Hantanasirisakul, Soohyung Park, Steven J. May, Vivek B. Shenoy, Yury Gogotsi, and Norbert Koch, Surface Termination Dependent Work Function and Electronic Properties of Ti3C2Tx MXene. Chemistry of Materials 2019 31 (17), 6590-6597. DOI: 10.1021/acs.chemmater.9b00414

    Geetha Valurouthu, Kathleen Maleski, Narendra Kurra, Meikang Han, Kanit Hantanasirisakul, Asia Sarycheva, and Yury Gogotsi, Tunable electrochromic behavior of titanium-based MXenes, Nanoscale, 2020, 12, 14204-14212. doi: 10.1039/D0NR02673E

    Tang, Jun; Mathis, Tyler; Kurra, Narendra; Sarycheva, Asia; Xiao, Xu; Hedhili, Mohamed N.; Jiang, Qiu; Alshareef, Husam N.; Xu, Baomin; Pan, Feng; Gogotsi Yury, Tuning the Electrochemical Performance of Titanium Carbide MXene by Controllable in situ Anodic Oxidation. Angewandte Chemie International Edition, (2019). doi:10.1002/ anie.201911604

    Girish Sambhaji Gund, Jeong Hee Park, Rana Harpalsinh, Manikantan Kota, Joo Hwan Shin, Tae-il Kim, Yury Gogotsi, Ho Seok Park, MXene/Polymer Hybrid Materials for Flexible AC-Filtering Electrochemical Capacitors, Joule, Volume 3, Issue 1, 2019, Pages 164-176, ISSN 2542-4351. doi: 10.1016/j.joule.2018.10.017.

    Qiuyang Tan, Xu Chen, Houzhao Wan, Bao Zhang, Xiang Liu, Lang Li, Cong Wang, Yi Gan, Pei Liang, Yi Wang, Jun Zhang, Hanbin Wang, Ling Miao, Jianjun Jiang, Peter A. van Aken, Hao Wang, Metal–organic framework-derived high conductivity Fe3C with porous carbon on graphene as advanced anode materials for aqueous battery-supercapacitor hybrid devices, Journal of Power Sources, Volume 448, 2020, 227403, ISSN 0378-7753. doi: 10.1016/j.jpowsour.2019.227403

    Jinho Lee, Suhyoung Kwon, And Ju Han Lee, Ti2AlC-based saturable absorber for passive Q-switching of a fiber laser. Optical Materials Express, Vol. 9, No. 5/1 May 2019,  doi:10.1364/OME.9.002057

    Hussein EA, Zagho MM, Rizeq BR, Younes NN, Pintus G, Mahmoud KA, Nasrallah GK, Elzatahry AA. Plasmonic MXene-based nanocomposites exhibiting photothermal therapeutic effects with lower acute toxicity than pure MXene. Int J Nanomedicine. 2019 Jun 20;14:4529-4539. doi: 10.2147/IJN.S202208.

    Hui Shao. 2D Ti3C2Tx MXenes for electrochemical energy storage. Electric power.PhD thesis, Université Paul Sabatier- Toulouse III, 2020. English. NNT: 2020TOU30195

    Amama, Placidus B. and Al Mayyahi, Ahmed and Sarker, Swagotom and Tonyali, Bade and Yucel, Umut, Synthesis of Ultrathin, Nano-Sized Ti3c2tx with Abundant =O and -Oh Terminals and High Transparency as a Cocatalyst: Enabling Design of High-Performance Titania-Ti3c2tx Hybrid Photocatalysts. Available at SSRN: https://ssrn.com/abstract=4090828 or  doi:10.2139/ssrn.4090828

    Tang, Jun & Mathis, Tyler & Zhong, Xiongwei & Xiao, Xu & Wang, Hao & Anayee, Mark & Pan, Feng & Xu, Baomin & Gogotsi, Yury. (2020). Optimizing Ion Pathway in Titanium Carbide MXene for Practical High‐Rate Supercapacitor. Advanced Energy Materials. 11. 2003025. doi: 10.1002/aenm.202003025.

    Srivatsa, Shreyas & Belthangadi, Pavithra & Ekambaram, Shivakarthik & Pai, Manu & Sen, Prosenjit & Uhl, T. & Kumar, Saurabh & Grabowski, Krzysztof & Nayak, M.M.. (2020). Dynamic response study of Ti3C2-MXene films to shockwave and impact forces. RSC Advances. 10. 29147-29155. doi: 10.1039/d0ra04879h.

    Limbu T.B., Chitara B., Orlando J.D., Garcia Cervantes M.Y., Kumari S., Li Q., Tang Y., Yan F., Green synthesis of reduced Ti3C2T: X MXene nanosheets with enhanced conductivity, oxidation stability, and SERS activity, (2020) Journal of Materials Chemistry C, 8 (14) , pp. 4722-4731 doi: 10.1039/C9TC06984D

    Iffat Ashraf, Saba Ahmad, Muhammad Arslan Raza, Ghulam Ali, Syed Rizwan, Mudassir Iqbal, 2D Ti3C2@MoO3 composite as an efficient anode material for high-performance supercapacitors, Materials Research Bulletin, Volume 153, 2022, 111902, ISSN 0025-5408, doi: 10.1016/j.materresbull.2022.111902.

    Jinho Lee, Kyungtaek Lee, and Ju Han Lee, Nonlinear absorption property investigation into MAX phase Ti2AlC at 1.9 μm, Opt. Mater. Express 11, 3556-3566 (2021) doi: 10.1364/OME.440452

    Yang, Yizhou, Hantanasirisakul, Kanit, Frey, Nathan C., Anasori, Babak, Green, Robert J., Rogge, Paul C., Waluyo, Iradwikanari, Hunt, Adrian, Shafer, Padraic, Arenholz, Elke, Shenoy, Vivek B., Gogotsi, Yury, and May, Steven J. Distinguishing electronic contributions of surface and sub-surface transition metal atoms in Ti-based MXenes. 2D Materials, Volume 7 (2); ISSN 2053-1583, 2020. Web. doi:10.1088/2053-1583/ab68e7.

    Valerii Myndrul, Emerson Coy, Nataliya Babayevska, Veronika Zahorodna, Vitalii Balitskyi, Ivan Baginskiy, Oleksiy Gogotsi, Mikhael Bechelany, Maria Teresa Giardi, Igor Iatsunskyi, MXene nanoflakes decorating ZnO tetrapods for enhanced performance of skin-attachable stretchable enzymatic electrochemical glucose sensor, Biosensors and Bioelectronics, Volume 207, 2022, 114141, ISSN 0956-5663, doi: 10.1016/j.bios.2022.114141

    Adomavičiūtė-Grabusovė, S.; Ramanavičius, S.; Popov, A.; Šablinskas, V.; Gogotsi, O.; Ramanavičius, A. Selective Enhancement of SERS Spectral Bands of Salicylic Acid Adsorbate on 2D Ti3C2Tx-Based MXene Film. Chemosensors 2021, 9, 223. doi: 10.3390/chemosensors9080223

    Shaohong Luo, Shashikant Patole, Shoaib Anwer, Baosong Li, Thomas Delclos, Oleksiy Gogotsi, Veronika Zahorodna, Vitalii Balitskyi and Kin Liao, Tensile behaviors of Ti3C2Tx (MXene) films. Nanotechnology, 2020, Volume 31, 395704 doi: 10.1088/1361-6528/ab94dd

    Jayaprakash Saththasivama, Kui Wangab, Wubulikasimu Yiming, Zhaoyang Liu and Khaled A. Mahmoud, A flexible Ti3C2Tx (MXene)/paper membrane for efficient oil/water separation. RSC Adv., 2019, 9, 16296-16304. DOI: 10.1039/C9RA02129A

    Thorsten Schultz, Nathan C. Frey, Kanit Hantanasirisakul, Soohyung Park, Steven J. May, Vivek B. Shenoy, Yury Gogotsi, and Norbert Koch, Surface Termination Dependent Work Function and Electronic Properties of Ti3C2Tx MXene. Chemistry of Materials 2019 31 (17), 6590-6597. DOI: 10.1021/acs.chemmater.9b00414

     Srivatsa, S.; Paćko, P.; Mishnaevsky, L., Jr.; Uhl, T.; Grabowski, K. Deformation of Bioinspired MXene-Based Polymer Composites with Brick and Mortar Structures: A Computational Analysis. Materials 2020, 13, 5189. doi: 10.3390/ma13225189

     Li, L., Liu, W., Jiang, K. et al.In-Situ Annealed Ti3C2Tx MXene Based All-Solid-State Flexible Zn-Ion Hybrid Micro Supercapacitor Array with Enhanced Stability. Nano-Micro Lett. 13, 100 (2021). Doi: 10.1007/s40820-021-00634-2

    ETCHING REACTOR FOR MXENE SYNTHESIS

    Michel W. Barsoum, Yury Gogotsi, Removing roadblocks and opening new opportunities for MXenes, Ceramics International,Volume 49, Issue 14, Part B, 2023, Pages 24112-24122. DOI: 10.1016/j.ceramint.2022.10.051.

    C. E. Shuck, A. Sarycheva, M. Anayee, A. Levitt, Y. Zhu, S. Uzun, V. Balitskiy, V. Zahorodna, O. Gogotsi, and Y. Gogotsi, Scalable Synthesis of Ti3C2Tx MXene. Advanced Engineering Materials 22, 1901241(2020) doi: 10.1002/adem.201901241

    M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Guidelines for Synthesis and Processing of 2D Titanium Carbide (Ti3C2Tx MXene),Chemistry of Materials, 2017, 29 (18) 7633-76445.

     

    Hossein Riazi, Srinivasa Kartik Nemani, Michael C. Grady, Babak Anasori, Masoud Soroush, Ti3C2 MXene–polymer nanocomposites and their applications,J. Mater. Chem. A, 2021,9, 8051-8098. doi: 10.1039/D0TA08023C

     

    C. E. Shuck and Y. Gogotsi, “Taking MXenes from the Lab to Commercial Products” Chemical Engineering Journal, vol. 401, pp. 125786, 2020

     

    Pritishma Lakhe, Safety in Process Scale-up of MXene and Graphite Oxide Production, PhD Thesis, Texas A&M University, 2020

     

    Fundamental Aspects and Perspectives of MXenes, Editors: Mohammad Khalid, Andrews Nirmala Grace, Arunachalam Arulraj, Arshid Numan. Series Engineering Materials, Springer International Publishing, 2022

     

    Chao Peng, Tao Zhou, Ping Wei, et al.Photocatalysis over MXene-based hybrids: Synthesis, surface chemistry, and interfacial charge kinetics. APL Mater. 9, 070703 (2021); doi: 10.1063/5.0055711

     

    SHS REACTOR FOR MAX-PHASE SYNTHESIS

     

    Stepan Vorotilo, Christopher E. Shuck, Mark Anayee et al. Affordable Combustion Synthesis of V2AlC Precursor for V2CTx MXene, 24 May 2023, DOI: 10.21203/rs.3.rs-2968558/v1

      

    Veronika Zahorodna, Oleksiy Gogotsi, Vitalii Balitskyi, Ivan Baginskiy, Veronika Zahorodna, Iryna Roslyk, Chris Shuck, Mikhail Shekhirev, Stepan Vorotylo, Yury Gogotsi, Equipment for upscaling manufacturing of MAX phases and MXenes synthesis. 2nd International MXene Conference, Drexel University, Philadelphia, USA, Aug. 1–3, 2022.

     

    Stepan Vorotilo, Christopher Shuck, Robert Lord, Mikhail Shekhirev, Ruocun (John) Wang, Teng Zhang, Mark Anayee, Oleksiy Gogotsi, Kyle Matthewes, Iryna Roslyk, Yury Gogotsi, Scalable combustion synthesis of MAX phase precursors to MXenes. 2nd International MXene Conference, Drexel University, Philadelphia, USA, Aug. 1–3, 2022.

     

     CARBIDE-DERIVED CARBONS (CDC)

      

    Boris Dyatkin, Oleksiy Gogotsi, Bohdan Malinovskiy, Yuliya Zozulya, Patrice Simon, Yury Gogotsi, High capacitance of coarse-grained carbide derived carbon electrodes, Journal of Power Sources, Volume 306, 2016, Pages 32-41, ISSN 0378-7753, doi: 10.1016/j.jpowsour.2015.11.099.

     

    Liying Liu, Xuehang Wang, Vladimir Izotov, Dmytro Havrykov, Illia Koltsov, Wei Han, Yulia Zozulya, Olga Linyucheva, Veronika Zahorodna, Oleksiy Gogotsi, Yury Gogotsi, Capacitance of coarse-grained carbon electrodes with thickness up to 800 μm, Electrochimica Acta, Volume 302, 2019, Pages 38-44, ISSN 0013-4686, doi: 10.1016/j.electacta.2019.02.004.

     

     

  • Self Propagating High Temperature Syntheis Reactor - SHS Reactor, customized equipment manufacturing

    Our Ukrainian partner Materials Research Centre(MRC) offers manufacturing of SHS Reactor.

    Our partners from MRC (Kiev, Ukraine) design and manufacture customized laboratory reactors for Self-Propagating High-Temperature Synthesis

    Self-Propagating High-Temperature Synthesis (SHS), also known as combustion or autoignition synthesis, creates materials by starting an exothermic reaction among powdered reactants. It stands out for being self-sustaining—generated heat continues the synthesis without needing an external heat source. SHS is widely used in making various materials like ceramics, intermetallic compounds, and composites.

    The design of a reactor for Self-Propagating High-Temperature Synthesis (SHS) is a critical aspect of ensuring the success and safety of the process. The reactor must be able to initiate and sustain the exothermic reaction while allowing for control over key parameters.

     We provide development of  SHS technologies, design and manufacturing of customized specialized equipment intended for synthesis of novel materials using non-critical raw materials as a precursor for SHS technology.

    SHS reactor and its thermal model: General view of the SHS reactor; Cross-section of the reactor; Thermal model of the SHS reactor with 60 g of the reaction mixture showing the temperature field in the reactor during the combustion synthesis.

    customized SHS reactor

    Vorotilo, S., Shuck, C.E., Anayee, M. et al. Affordable combustion synthesis of V2AlC precursor for V2CTx MXene. Graphene and 2D mater 8, 93–105 (2023). https://doi.org/10.1007/s41127-023-00059-1

    For orders please contact us at This email address is being protected from spambots. You need JavaScript enabled to view it.